Package 'AccSamplingDesign'

November 15, 2025

Title Acceptance Sampling Plans Design

Version 0.0.7
Description Provides tools for designing and analyzing Acceptance Sampling plans. Supports both Attributes Sampling (Binomial and Poisson distributions) and Variables Sampling (Normal and Beta distributions), enabling quality control for fractional and compositional data. Uses nonlinear programming for sampling plan optimization, minimizing sample size while controlling producer's and consumer's risks. Operating Characteristic curves are available for plan visualization.
License GPL-3
Encoding UTF-8
Imports stats, methods
Suggests VGAM, knitr, rmarkdown
VignetteBuilder knitr
<pre>URL https://github.com/vietha/AccSamplingDesign</pre>
BugReports https://github.com/vietha/AccSamplingDesign/issues
RoxygenNote 7.3.2
NeedsCompilation no
Author Ha Truong [aut, cre, cph], Victor Miranda [ths, rev], Roger Kissling [ths, rev]
Maintainer Ha Truong <truongvietha87@gmail.com></truongvietha87@gmail.com>
Repository CRAN
Date/Publication 2025-11-15 19:10:02 UTC
Contents
accProb manualPlan muEst OCdata

2 accProb

Index	1	7
	summary.VarPlan	5
	summary.AttrPlan	
	plot.VarPlan	
	plot.OCdata	2
	plot.AttrPlan	
	optVarPlan	9
	optPlan	7
	optAttrPlan	

accProb

Acceptance Probability

Description

Calculate the probability of acceptance for a given quality level.

Usage

```
accProb(plan, p)
```

Arguments

```
plan Acceptance plan object (AttrPlan/VarPlan).
p True quality level (proportion of nonconforming).
```

Value

Numeric probability between 0 and 1.

Author(s)

Ha Truong

Examples

manualPlan 3

manualPlan	Create manual acceptance sampling (AS) plan from User Inputs
manualPlan	Create manual acceptance sampling (AS) plan from User Inputs

Description

Constructs an AttrPlan or VarPlan object from the given parameters.

Usage

Arguments

distribution	One of "binomial", "poisson", "normal", or "beta".
n	Sample size.
С	Acceptance number (for attribute sampling).
k	Acceptability constant (for variable sampling).
USL	Upper specification limit.
LSL	Lower specification limit.
sigma	Standard deviation (for normal plans).
theta	Precision parameter (for beta plans).
sigma_type	Either "known" or "unknown" (for normal).
theta_type	Either "known" or "unknown" (for beta).

Details

This function provides a user-friendly wrapper to construct AS plan directly from parameters. Internally, it constructs the appropriate AttrPlan or VarPlan, from given parameters.

Value

```
An object of class "AttrPlan" or VarPlan.
```

Author(s)

Ha Truong

See Also

```
optPlan, OCdata
```

4 muEst

Examples

```
# Attribute sampling with user-defined parameters
plan1 <- manualPlan(n = 100, c = 2, distribution = "binomial")

# Variable sampling (normal)
plan2 <- manualPlan(n = 30, k = 1.5, distribution = "normal", USL = 10, sigma = 1)</pre>
```

muEst

Estimate Mean μ Based on Specification Limits and Probability

Description

Computes the estimated mean μ for a given level of quality and specification limit under either a normal or beta distribution.

Usage

Arguments

p	Level of quality (numeric, between 0 and 1).
USL	Upper specification limit (numeric). Only one of USL or LSL should be provided.
LSL	Lower specification limit (numeric). Only one of USL or LSL should be provided.
sigma	Standard deviation (numeric) for the normal distribution. Must be provided if dist = "normal".
theta	Theta parameter (numeric) for the beta distribution. Must be provided if dist = "beta".
dist	Distribution type. Either "normal" or "beta".

Details

The function estimates the mean μ corresponding to a given tail probability p, assuming that the process output follows either a normal or beta distribution, and that the probability of being beyond the provided specification limit equals 1 – p.

- For the normal distribution, the mean is calculated using the inverse cumulative distribution function (quantile function) of the normal distribution.
- For the beta distribution, the mean is solved numerically such that the CDF at the specified limit equals p, given the shape determined by theta.

Exactly one of USL or LSL must be provided to define whether the probability refers to the upper or lower tail.

OCdata 5

Value

Returns the estimated mean μ as a numeric value.

Author(s)

Ha Truong

Examples

```
# Example for normal distribution with lower specification limit (LSL) muEst(p = 0.95, LSL = 10, sigma = 2, dist = "normal")  
# Example for beta distribution with upper specification limit (USL) muEst(p = 0.95, USL = 0.7, theta = 500, dist = "beta")
```

0Cdata

Generic function for OC Curve Generation

Description

Generic function to compute Operating Characteristic (OC) curve data from an acceptance sampling plan.

Usage

```
OCdata(plan, pd = NULL)
```

Arguments

plan An object of class AttrPlan or VarPlan.

pd Vector of quality levels (proportions of nonconforming items).

Details

This is a generic function. Methods are defined for objects of class AttrPlan and VarPlan, which compute the probability of acceptance across a range of quality levels (proportions of nonconforming).

See OCdata. AttrPlan and OCdata. VarPlan for details.

Value

An object of class "OCdata", a list containing:

- pd quality levels (e.g. proportion defective)
- paccept probability of acceptance at each level
- process_means process means, if applicable
- dist, n, k, c plan parameters

6 optAttrPlan

Author(s)

Ha Truong

See Also

```
optPlan, manualPlan
```

optAttrPlan

Attributes Acceptance Sampling Plan

Description

Designs Attributes Acceptance Sampling plans using producer/consumer risk criteria.

Usage

Arguments

PRQ Producer Risk Quality (0 < PRQ < 1)CRQ Consumer Risk Quality (PRQ < CRQ < 1)

alpha Producer's risk (0.05 default) beta Consumer's risk (0.10 default)

distribution Support binomial and poisson distribution

Value

AttrPlan object containing:

n Sample size

c Acceptance number
PRQ Input PRQ value
CRQ Input CRQ value
distribution Selected distribution

Author(s)

Ha Truong

References

```
ISO 2859-1:1999 - Sampling procedures for inspection by attributes
```

Schilling, E.G., & Neubauer, D.V. (2017). Acceptance Sampling in Quality Control (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.4324/9781315120744

optPlan 7

Examples

optPlan

Optimal Acceptance Sampling Plan

Description

Design optimal variable acceptance sampling plans based on specified parameters. Supports different distributions (binomial, poisson, normal, beta) and accommodates known or unknown standard deviation and process parameters.

Usage

```
optPlan(PRQ, CRQ, alpha = 0.05, beta = 0.10, USL = NULL, LSL = NULL,
    distribution = c("binomial", "poisson", "normal", "beta"),
    sigma_type = c("known", "unknown"),
    theta_type = c("known", "unknown"),
    sigma = NULL, theta = NULL)
```

Arguments

PRQ	Producer's risk quality level (e.g., acceptable quality level).
CRQ	Consumer's risk quality level (e.g., rejectable quality level).
alpha	Producer's risk (Type I error), default is 0.05.
beta	Consumer's risk (Type II error), default is 0.10.
USL	Upper Specification Limit. Required for variable sampling plans.
LSL	Lower Specification Limit. Required for variable sampling plans.
distribution	Distribution type used in the plan. Can be "binomial", "poisson", "normal", or "beta".
sigma_type	Indicates if the standard deviation (sigma) is known or unknown.
theta_type	Indicates if the process parameter (theta) is known or unknown.
sigma	Known standard deviation of the process, if applicable.
theta	Precision (dispersion) parameter for the beta distribution. If unknown, it can be estimated from historical data using functions such as betaff.

8 optPlan

Details

This function designs optimal acceptance sampling plans by balancing producer's and consumer's risks under specified quality levels. It supports plans for attributes (binomial) and variables (normal or beta distributions), including cases with unknown standard deviation or distributional parameters.

For the "normal" model, the plan can be computed assuming the standard deviation (sigma) is either known or estimated from data. Optimization for unknown sigma is performed using the derivative-free Nelder-Mead method (Nelder and Mead, 1965) via optim in base R.

For the "beta" model, the dispersion (precision) parameter theta determines how concentrated the distribution is around the mean. Users must either:

- provide a known value for theta, typically obtained from prior process studies or historical data; or
- estimate it from sample data using a fitting function such as betaff in the VGAM package.

Optimization for Beta plans is performed using optim with the "L-BFGS-B" method (Byrd et al., 1995) to handle bounds on sample size and acceptance numbers.

This approach ensures stable and efficient plan calculation while relying solely on base R functionality.

Value

Returns a list or data frame with optimal sample size(s) and critical value(s) based on the specified parameters and distribution.

distribution	Selected distribution
sample_size	Final sample size after rounding up to the next integer, for practical application.
n	Sample size (unrounded for Variables Acceptance Sampling).
k	Acceptability constant - For Variables Acceptance Sampling.
С	Acceptance number - For Attributes Acceptance Sampling.

Author(s)

Ha Truong

References

- * ISO 2859-1:1999 Sampling procedures for inspection by attributes
- * ISO 3951-1:2013 Sampling procedures for inspection by variables.
- * Wilrich, PT. (2004). Single Sampling Plans for Inspection by Variables under a Variance Component Situation. In: Lenz, HJ., Wilrich, PT. (eds) Frontiers in Statistical Quality Control 7. Physica, Heidelberg.
- * K. Govindaraju and R. Kissling (2015). Sampling plans for Beta-distributed compositional fractions.
- * J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4): 308–313, 1965. DOI 10.1093/comjnl/7.4.308.
- * R. H. Byrd, P. Lu, J. Nocedal and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5): 1190–1208, 1995. DOI 10.1137/0916069.

optVarPlan 9

Examples

optVarPlan

Variables Acceptance Sampling Plan

Description

Creates Variable Acceptance Sampling plans for normal or beta distributed measurements.

Usage

Arguments

PRQ	Producer Risk Quality (must be within valid range for the chosen distribution).
CRQ	Consumer Risk Quality (must be greater than PRQ and within valid range).
alpha	Producer's risk (numeric between 0 and 1).
beta	Consumer's risk (numeric between 0 and 1).
USL	Upper Specification Limit (numeric). Only one of USL or LSL should be provided.
LSL	Lower Specification Limit (numeric). Only one of USL or LSL should be provided.
distribution	Measurement distribution: "normal" or "beta".
sigma_type	Indicates whether sigma (population standard deviation) is "known" or "unknown".
theta_type	Indicates whether theta (population precision parameter for beta) is "known" or "unknown".
sigma	Known standard deviation (used for normal distribution). Required if sigma_type = "known".
theta	Precision (dispersion) parameter for the beta distribution. If unknown, it can be estimated from historical data using functions such as betaff.

10 optVarPlan

Details

The function generates variable acceptance sampling plans based on specified producer and consumer risks and either a normal or beta distribution model.

The specification limit must be defined via either USL (upper specification limit) or LSL (lower specification limit), depending on whether the one-sided quality criterion concerns the upper or lower tail. Only one limit should be provided.

For the "normal" model, the plan can be computed assuming the standard deviation (sigma) is either known or estimated from data. Optimization for unknown sigma is performed using the derivative-free Nelder-Mead method (Nelder and Mead, 1965) via optim in base R.

For the "beta" model, the dispersion (precision) parameter theta determines how concentrated the distribution is around the mean. Users must either:

- provide a known value for theta, typically obtained from prior process studies or historical data; or
- estimate it from sample data using a fitting function such as betaff in the VGAM package.

Optimization for Beta plans is performed using optim with the "L-BFGS-B" method (Byrd et al., 1995) to handle bounds on sample size and acceptance numbers.

This approach ensures stable and efficient plan calculation while relying solely on base R functionality.

Value

A VarPlan object containing:

distribution Distribution used ("normal" or "beta").

sample_size Final sample size after rounding up to the next integer, for practical application.

k Acceptability constant.n Unrounded sample size.

Author(s)

Ha Truong

References

- * ISO 3951-1:2013 Sampling procedures for inspection by variables.
- * Wilrich, PT. (2004). Single Sampling Plans for Inspection by Variables under a Variance Component Situation. In: Lenz, HJ., Wilrich, PT. (eds) Frontiers in Statistical Quality Control 7. Physica, Heidelberg.
- * K. Govindaraju and R. Kissling (2015). Sampling plans for Beta-distributed compositional fractions.
- * J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4): 308–313, 1965. DOI 10.1093/comjnl/7.4.308.
- * R. H. Byrd, P. Lu, J. Nocedal and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5): 1190–1208, 1995. DOI 10.1137/0916069.

plot.AttrPlan 11

Examples

```
# Example for normal distribution plan
norm_plan <- optVarPlan(</pre>
  PRQ = 0.025,
                     # Acceptable quality level (% nonconforming)
  CRQ = 0.1,
 CRQ = 0.1, # Rejectation,
alpha = 0.05, # Producer's risk
heta = 0.1, # Consumer's risk
                     # Rejectable quality level (% nonconforming)
  distribution = "normal",
  USL = 10
summary(norm_plan)
# Example for beta distribution plan
beta_plan <- optVarPlan(</pre>
  PRQ = 0.025, # Target quality level (% nonconforming)
  CRQ = 0.1,
                     # Minimum quality level (% nonconforming)
  alpha = 0.05,
                     # Producer's risk
                      # Consumer's risk
  beta = 0.1,
  distribution = "beta",
  theta = 44000000, # Beta distribution parameter
  LSL = 0.00001
)
summary(beta_plan)
```

plot.AttrPlan

Plot the OC Curve for Attribute Sampling Plans

Description

Plots the Operating Characteristic (OC) curve for an attribute sampling plan object of class AttrPlan.

Usage

```
## S3 method for class 'AttrPlan'
plot(x, pd = NULL, ...)
```

Arguments

An object of class AttrPlan representing an attribute acceptance sampling plan.
 Optional vector of proportions of nonconforming items. If NULL (default), a range is automatically generated.
 Additional graphical parameters passed to plot().

Details

This method computes and visualizes the probability of acceptance (P(accept)) as a function of the proportion of nonconforming items in the population, based on the attribute sampling plan.

The plot also includes reference lines at the plan's producer and consumer quality levels (PRQ, CRQ) and their corresponding acceptance probabilities.

12 plot.OCdata

Value

A plot showing the OC curve for the given attribute sampling plan.

Author(s)

Ha Truong

See Also

```
optAttrPlan, accProb, OCdata
```

Examples

```
# Create attribute plan
plan <- optAttrPlan(PRQ = 0.01, CRQ = 0.1)
# Plot OC curve
plot(plan)
# With custom pd
plot(plan, pd = seq(0, 0.15, by = 0.001))</pre>
```

plot.OCdata

Plot Method for OCdata Objects

Description

Plots the Operating Characteristic (OC) curve from an object of class "OCdata", either by proportion nonconforming or process mean levels.

Usage

```
## S3 method for class 'OCdata'
plot(x, by = c("pd", "mean"), ...)
```

Arguments

An object of class "OCdata", typically generated using OCdata().

A character string indicating the type of OC curve to plot. Options are:

"pd" (Default) Plot the OC curve by proportion nonconforming.

"mean" Plot the OC curve by estimated process mean levels (only available for variable sampling plans).

Additional graphical parameters passed to the plot() function.

plot.VarPlan

Details

This method visualizes the OC curve based on the content of the "OCdata" object.

By default, the curve is plotted against the proportion of nonconforming items (@pd). If by = "mean" is specified and the plan includes valid mean-level estimates (@process_means), the curve is plotted against mean levels.

If by = "mean" is requested but no mean estimates are available (e.g., for attribute plans), a message will be shown and no plot will be drawn.

Value

A plot showing the OC curve for the given attribute/variable sampling plan.

Author(s)

Ha Truong

See Also

```
OCdata, optAttrPlan, optVarPlan
```

Examples

plot.VarPlan

Plot the OC Curve for Variable Sampling Plans

Description

Plots the Operating Characteristic (OC) curve for an object of class VarPlan. Supports plotting against either the proportion of nonconforming items or the corresponding process mean levels, depending on availability.

Usage

```
## S3 method for class 'VarPlan'
plot(x, pd = NULL, by = c("pd", "mean"), ...)
```

14 plot. VarPlan

Arguments

Χ	An object of class VarPlan representing a variable acceptance sampling plan.
pd	Optional numeric vector of proportions of nonconforming items to evaluate. If NULL (default), a suitable range is generated automatically.
by	Character string indicating which x-axis to use for plotting. Either "pd" for proportion nonconforming (default) or "mean" for process mean levels. If "mean" is selected but the plan lacks specification limits, an error is raised.
	Additional graphical parameters passed to plot().

Details

This plotting method visualizes the probability of acceptance (P(accept)) against the desired metric, based on the parameters of a variable sampling plan.

If by = "pd", the x-axis represents the proportion of nonconforming items. If by = "mean" and the plan defines limit_type and spec_limit, the function estimates corresponding process means using muEst and plots the OC curve by those mean values.

Reference lines for the Producer's Risk Quality (PRQ) and Consumer's Risk Quality (CRQ), along with their respective acceptance probabilities, are shown when plotting by proportion.

Value

A plot showing the OC curve for the given variable sampling plan, either by nonconforming proportion or mean level.

Author(s)

Ha Truong

See Also

```
optVarPlan, accProb, muEst, OCdata, plot.OCdata
```

Examples

```
# Variable sampling plan with specification limits
plan <- optVarPlan(
   PRQ = 0.025, CRQ = 0.1,
   alpha = 0.05, beta = 0.1,
   distribution = "normal",
   USL = 3, sigma = 0.1
)

# Plot by proportion nonconforming
plot(plan, by = "pd")

# Plot by estimated mean level (requires spec_limit and limit_type)
plot(plan, by = "mean")

# Custom pd vector</pre>
```

summary.AttrPlan 15

```
plot(plan, pd = seq(0.01, 0.15, by = 0.001))
```

summary.AttrPlan

Summarize Attribute Acceptance Plan

Description

Detailed summaries for attribute acceptance plans.

Usage

```
## S3 method for class 'AttrPlan'
summary(object, ...)
```

Arguments

object Plan object to summarize
... Additional parameters (ignored)

Value

No return value. This function is called for its side effect of printing a formatted summary of the attribute sampling plan to the console.

Author(s)

Ha Truong

Examples

```
attr_plan <- optAttrPlan(PRQ = 0.01, CRQ = 0.1)
summary(attr_plan)</pre>
```

summary.VarPlan

Summarize Variables Acceptance Plan

Description

Detailed summaries for Variables Acceptance Sampling plans.

Usage

```
## S3 method for class 'VarPlan'
summary(object, ...)
```

16 summary. VarPlan

Arguments

```
object Plan object to summarize
... Additional parameters (ignored)
```

Value

No return value. This function is called for its side effect of printing a formatted summary of the variable sampling plan to the console.

Author(s)

Ha Truong

Examples

```
var_plan <- optVarPlan(
  PRQ = 0.025,  # Acceptable quality level (% nonconforming)
  CRQ = 0.1,  # Rejectable quality level (% nonconforming)
  alpha = 0.05,  # Producer's risk
  beta = 0.1,  # Consumer's risk
  distribution = "normal"
)
summary(var_plan)</pre>
```

Index

```
accProb, 2, 12, 14
betaff, 7–10
manualPlan, 3, 6
muEst, 4, 14
OCdata, 3, 5, 12–14
OCdata.AttrPlan, 5
OCdata.VarPlan, 5
optAttrPlan, 6, 12, 13
optim, 8, 10
optPlan, 3, 6, 7
optVarPlan, 9, 13, 14
\verb|plot.AttrPlan|, \\ 11
plot.OCdata, 12, 14
plot.VarPlan, 13
summary.AttrPlan, 15
\verb|summary.VarPlan|, 15|
```